Как проверить can шину автомобиля?

Статьи

Как проверить can шину автомобиля?

А.А. ДедюхинПрименение устройств на основе протокола передачи CAN, уже давно вышло за рамки первоначальной идеи использования в автомобильной промышленности. В настоящее время эти устройства широко применяются в железнодорожном транспорте, лифтовом хозяйстве, системах сигнализации и многих других.

Применение устройств на основе протокола передачи CAN, уже давно вышло за рамки первоначальной идеи использования в автомобильной промышленности. В настоящее время эти устройства широко применяются в железнодорожном транспорте, лифтовом хозяйстве, системах сигнализации и многих других. Но, как и любая система, основанная на передаче электрического сигнала, система, построенная на основе CAN протокола, требует анализа физического сигнала передаваемого в среде распространения, декодирования передаваемого и принимаемого сигнала, поиска и анализа ошибок, проведения специфических для CAN шины измерений.

Потребность в такого типа средствах измерения возникает не только на стадии разработки CAN устройств или систем, но и при монтаже сложных CAN систем, техническом обслуживании систем уже находящихся в эксплуатации.

В качестве первичного устройства используемого для анализа протокола CAN, рациональнее всего использовать цифровой запоминающий осциллограф. Для этих целей компания LeCroy рекомендует использовать осциллографы серии WaveRunner – эти осциллографы обладают высокой частотой дискретизации (от 2,5 до 10 Гвыб\с), большой длинной внутренней памяти – до 8М, число каналов 2 или 4 (что достаточно как для наблюдения сигнала CAN, так и аналоговых сигналов), они построены на принципе «открытой платформы» и обладают широкими возможностями для документирования полученных результатов.

Подключение входа осциллографа к источнику сигнала CAN может осуществляться несколькими способами:

  • Подключение одного канала осциллографа к выводам CAN- L (низкий) или CAN- H (высокий). Это самый простой способ подключения, но он полностью исключает подавление синфазных сигналов на шине CAN;
  • Подключение двух каналов осциллографа, один к выводам CAN- L (низкий) второй CAN- H (высокий). Этот способ подключения обеспечивает подавление синфазных сигналов, но задействует два аналоговых входа осциллографа;
  • Подключение одного канала осциллографа к выводам CAN- L (низкий) и CAN- H (высокий) с помощью дифференциального пробника. Это самый корректный способ подключения, он прекрасно обеспечивает подавление синфазных помех, задействует один аналоговый вход осциллографа и позволяет получить максимальную длину внутренней памяти;

Пример отображения сигнала CAN -Н в осциллографическом режиме или его физическое отображение приведен на рисунке 1.

Рисунок 1 (здесь и далее щелчок по изображению — увеличение)

Очевидно, что такого отображения сигнала недостаточно, для оперативного анализа передаваемого сообщения — выделения адреса, данных, бита подтверждения и т.д. .Хотя, набравшись терпения и достаточным запасом времени это возможно сделать в ручную. Но если стоит задача анализа массива сообщений только с определенным ID или содержащих определенную информацию – то этот «дедовский» способ не подойдет.

При анализе протокола CAN необходимо решить две задачи:

  • Обеспечить CAN синхронизацию;
  • Обеспечить декодирование сигнала CAN для последующего анализа.

Синхронизация CAN обеспечивается специальным опционным модулем CAN- TDM, имеющем в своем комплекте кабели и аксессуары, необходимые для подключения к любому типу CAN шины и программным обеспечением осциллографа.

Декодирование сообщения CAN

Осуществляются специализированным программным обеспечением, интегрированным в оболочку цифрового запоминающего осциллографа и позволяет полностью идентифицировать информацию, содержащуюся в сообщении CAN, а именно:

  • ID (адрес) сообщения;
  • DLC (число кодовых сообщений);
  • Значения данных в кодовом сообщении в формате шестнадцатеричного кода;
  • CLC (контрольную сумму ).

При декодировании сигнала его отдельные составляющие выделяются разным цветом, а при необходимости возможно индицировать и дополнительные биты сообщения CAN, такие как – битстаффинг или бит подтверждения.

Так на рисунке 2 приведен пример декодированного сообщения CAN, на котором четко видны составные части сообщения CAN.

Рисунок 2

Синхронизация CAN

Синхронизация сигнала CAN может осуществляться по различным заданным условиям или без условия. Синхронизацию без условий, или режим «Все» обеспечивает синхронизацию любым сообщением CAN находящимся на шине в настоящий момент времени – в этом режиме осциллограф поочередно отображает все сообщения CAN. Это удобно при оценке нагрузки на шине CAN или поиске ошибок.

Длинная память осциллографов LeCroy (а это как уже упоминалось до 8 М), позволяет одновременно зафиксировать на экране осциллографа несколько сотен сообщений CAN. Естественно, для того чтобы разглядеть отдельное сообщение CAN в этом потоке, необходимо воспользоваться растяжкой осциллографа. Так на рис 3. приведен пример захвата около 500 сообщений CAN. На верхней осциллограмме изображен поток сообщений CAN, на нижней осциллограмме применена растяжка, на которой видно декодированное сообщение.

Так же на рисунке 3, на верхней осциллограмме видно, что при обнаружении в потоке сообщений содержащих ошибки, эти сообщения выделяются красным цветом и помечаются флагом « Error».

Рисунок 3

Так на рисунке 4 приведен пример отображения обнаруженной ошибки формы.

Рисунок 4

Синхронизация CAN может так же осуществляться по различным условиям, это:

  • по заданному номеру ID (равен; не равен; больше; больше или равно; меньше; меньше или равно; в диапазоне; вне диапазона);
  • по значению данных содержащихся как в целом сообщении, так и его отдельной части (равен; не равен; больше; больше или равно; меньше; меньше или равно; в диапазоне; вне диапазона);

Такая реализация синхронизации CAN, позволяет из всего потока сообщений CAN фиксировать только те, которые представляют интерес для конкретной задачи анализа, например имеющие определенный ID или содержащие данные необходимы для фиксации. Например, в автомобиле необходимо анализировать только сообщения передаваемые датчиком температуры масла двигателя и когда температура превысила определенный установленный порог. Или, например, в координатном фрезерном станке необходимо фиксировать только сообщения, передаваемые определенным датчиком положения. Так на рисунке 5 приведен пример выделения из потока CAN сообщений только с ID= 0 x7 cf.

Очевидно, что если сообщения CAN с определенным адресом будут передаваться в шину очень редко, достаточно высока вероятность потерять предыдущие CAN сообщения, из-за того, что линия развертки осциллографа находится в автоколебательном режиме и при каждом новом проходе развертки, предыдущая осциллограмма стирается с экрана. Для предотвращения этого явления осциллографы LeCroy имеют режим последовательной развертки, при котором после записи первого сигнала, развертка останавливается и ожидает второго запуска, после второго запуска останавливается и ждет третьего и т.д.

В этом режиме осциллограф LeCroy Wave Runner может зафиксировать до 1000 отдельных сигналов, причем время между сигналами не имеет значения (хоть 1 час! Или больше), а при использовании запуска по определенному ID — это 1000 последовательных CAN сообщений с одним заданным адресом. Автоматический анализ декодированных данных, содержащихся в этих CAN сообщениях, например построение графика, даст полную информационную картинную о температуре масла двигателя, регистрируемой датчиком, выбранным нами в качестве примера.

Так на рисунке 5, приведен пример последовательной синхронизации 20 сообщений с адресом ID=0 x7с3 и их последующего декодирования, на рисунке 6 отображено декодирование 13-го сообщения.

Читайте также  Как выбрать автосигнализацию для автомобиля?
Рисунок 5

При последовательной синхронизации, поскольку запуск развертки «приостанавливается», существует опасность потери информации о времени между сообщениями CAN, особенно если это время очень большое.

Но схема синхронизации осциллографов LeCroy построена по такому принципу, что при последовательной развертке, время между сегментами фиксируется в памяти осциллографа и что в последствии позволяет рассчитать частоту следования сообщений.

Так на рисунке 6 отображено окно времени между запусками развертки для сообщений, зафиксированных на рисунке 6. Из рисунка 7 видно, что сообщения с ID=7с3, следуют не равномерно и время между первыми 10 сообщениями составляет от 482 мс до 9,98 с.

Рисунок 6
Рисунок 7

Обнаружение и анализ ошибок

Программное обеспечение CAN- bus осциллографа LeCroy позволяет не только обнаруживать ошибки, как было показано на рисунке 3 и 4, но анализировать типы обнаруженных ошибок. Так представляется возможным определять следующие типа ошибок:

  1. Ошибка формата (form error);
  2. Ошибка битстаффинга (stuff error)
  3. Ошибка контрольной суммы (CRC error)
  4. Ошибка на уровне бита(bit error)

Кадр, содержащий ошибку выделяется красным цветом, а тип обнаруженной ошибки индицируется в верхней части кадра. Так на рисунке 8 приведен пример ошибки контрольной суммы.

Рисунок 8

Пользовательский интерфейс анализатора шины CAN построен таким образом, что перемещение от зафиксированной ошибки к другой ошибке осуществляется нажатием всего на одну кнопку «Следующая ошибка», расположенную в поле управления растяжкой сообщения CAN, что существенно облегчает просмотр всей последовательности ошибок

Измерения на шине CAN

Очевидно, что без функций измерения различных параметров сигналов передаваемых по шине CAN, процесс анализа шины CAN был бы не полным. Помимо измерения традиционных параметров сигнала, присущих большинству цифровых осциллографов, таких как частота, период, длительность, время нарастания или спада, время между фронтами двух независимых сигналов, пиковое значение сигнала, минимальное или максимальное сигнала и многие другие. Осциллографы LeCroy имеют специфические функции измерения временных параметров, используемые только в режиме анализа шины CAN. Это следующие режимы измерения:

  1. Измерение временного интервала между аналоговым сигналом (сигналом возмущения) и цифровым сообщением CAN (реакцией системы).
  2. Измерение времени между двумя заданными сообщениями CAN. В этом режиме задаются ID начального сообщения, данные начального сообщения (при необходимости, а так же условия совпадения для данных), ID конечного сообщения, данные конечного сообщения (при необходимости, а так же условия совпадения для данных). При обнаружении осциллографом двух сообщений соответствующих заданным условиям, происходит измерение временного интервала между ними. Здесь так же большое значение имеет длинна внутренней памяти. Поскольку измерение одиночного временного интервала производится в пределах одного экрана, то для сбора максимального числа сообщений CAN, содержащих, в том числе, сообщения, удовлетворяющие заданным условиям, необходима как можно более длинная память.
  3. Преобразование данных содержащихся в сообщении CAN в числовое значение с использованием ранжирования и единиц измерения.
  4. Измерение длительности сообщения передаваемого по шине CAN с заданным ID и условиями совпадения для данных.
  5. Расчет нагрузки сообщений CAN в %. Определяется как отношение длительности всех сообщений CAN, с заданным ID и условиями совпадения для данных к времени сбора информации.

Так на рисунке 9 приведен пример сигнала CAN и одновременного измерения (с лева на право):

  • длительности между сообщениями с ID=0 x7 c2 и с ID= 0 x7 b2;
  • длительности сообщения с ID=0 x7 c2;
  • преобразование данных сообщения с ID=0 x7 c2 в значение скорости;
  • расчет загрузки сообщения с ID=0 x7 c2
Рисунок 8

Так же при анализе сообщений CAN доступны вертикальные и горизонтальные курсорные измерения в режиме абсолютных или дельта измерений.

  Дедюхин А.А.   01.09.2005

У нас представлены товары лучших производителей

ПРИСТ предлагает оптимальные решения измерительных задач.

У нас вы можете купить осциллограф, источник питания, генератор сигналов, анализатор спектра, калибратор, мультиметр, токовые клещи, поверить средства измерения или откалибровать их. Также мы поставляем паяльно-ремонтное оборудование, антистатический инструмент, промышленную мебель. Мы имеем прямые контракты с крупнейшими мировыми производителями измерительного оборудования, благодаря этому можем подобрать то оборудование, которое решит Ваши задачи. Имея большой опыт, мы можем рекомендовать продукцию следующих торговых марок:

Источник: https://prist.ru/library/stati/analiz_i_izmereniya_v_shine_can_s_ispolzovaniem_cifrovyh_oscillografov_lecroy/

Проверка кан шины мультиметром

Как проверить can шину автомобиля?

CAN Технологии
Применяемая на автомобилях система CAN (Controller_Area_Network) позволяет установить связь между отдельными электронными блоками управления. При эксплуатации автомобиля и при диагностике его агрегатов эта система предоставляет возможность использования новых функций, которые не могут быть возложены на отдельно действующие блоки управления.Применяемая на автомобилях система CAN позволяет объединить в локальную сеть электронные блоки управления или сложные датчики, как, например, датчик угла поворота рулевого колеса.

Обозначение CAN является сокращением от выражения Controller:Area:Network (локальная сеть, связывающая блоки управления). Применение системы CAN на автомобиле дает следующие преимущества:Обмен данными между блоками управления производится на унифицированной базе. Эту базу называют протоколом. Шина CAN служит как бы магистралью для передачи данных.Независимо действующие системы, например, система курсовой стабилизации ESP, могут быть реализованы с меньшими затратами.Упрощается подключение дополнительного оборудования.

Шина данных CAN является открытой системой, к которой могут быть подключены как медные провода, так и стекловолоконные проводники.Диагностика электронных блоков управления производится посредством кабеля «К».Диагностика некоторых компонентов оборудования салона автомобиля уже сегодня производится через шину CAN (например, это подушки безопасности и блоки управления в дверях автомобиля). В данном случае речь идет о так называемом виртуальном кабеле «К». В будущем необходимость в кабеле «К» должна отпасть.

Можно проводить одновременную диагностику нескольких блоков управления, входящих в систему.

CAN

Промышленная сеть CAN (Controller Area Network) была создана в конце 80-х годов фирмой Bosch как решение для распределенных систем, работающих в режиме реального времени. Первая реализация CAN применялась в автомобильной электронике, однако сейчас CAN находит применение практически в любых типах машин и промышленных установок, от простейших бытовых приборов до систем управления ускорителями элементарных частиц. В настоящий момент CAN-протокол стандартизован в международном стандарте ISO 11898.

Основные положения стандарта CAN.В качестве среды передачи в CAN используется дифференциальная линия связи — витая пара, сигналы по которой передаются в дифференциальном режиме.Для контроля доступа к среде передачи используется метод недеструктивного арбитража.Данные передаются короткими (максимальная длина поля данных — 8 байт) пакетами, которые защищены контрольной суммой.

В CAN отсутствует явная адресация сообщений. Вместо этого каждый пакет снабжен полем арбитража (идентификатор+RTR-бит), которое задает приоритет сообщения в сети.CAN имеет исчерпывающую схему контроля ошибок, которая гарантирует повторную передачу пакета, в случае возникновения ошибок передачи/приема сообщения.

В CAN существует способ автоматического устранения узла, являющегося источником ошибочных пакетов в сети.

CAN контроллеры.

Протокол CAN полностью реализован аппаратно — в виде микросхем- CAN контроллеров или в виде стандартного периферийного устройства в составе микросхемы- микроконтроллера. Все производители современных микроконтроллеров по крайней мере в одном из семейств имеют микроконтроллеры со встроенным периферийным одним или несколькими CAN-контроллерами. Таким образом, сегодня, СAN-контроллер является таким же стандартным периферийным устройством как контроллер SPI, I2C или UART.

Читайте также  Что нужно для автозапуска автомобиля?

Что такое CAN-шина

Для повышения надежности в CAN-шине используется принцип дифференциальной передачи данных, требующий двух проводов, CAN-High (CAN-H) высокий и CAN-Low (CAN-L) низкий уровень напряжения.

Рецессивные и доминантные биты

Для повышения надежности в CAN-шине используется принцип дифференциальной передачи данных, требующий двух проводов, CAN-High (CAN-H) высокий и CAN-Low (CAN-L) низкий уровень напряжения.

Как это исполнено физически
Физически CAN-шина – система из специального кабеля с разветвителями для подключения электронных блоков и конечных устройств-терминаторов (резисторов).

Указания по проверке

  • Проверка напряжения (осциллограф): Для проверки напряжения должна быть подсоединена АКБ и включено зажигание.
  • Измерение сопротивления: При измерении сопротивления необходимо, чтобы измеряемый объект перед измерением был приведен в обесточенное состояние. Для этого отсоединяется аккумуляторная батарея. Подождать 3 минуты пока разрядятся все конденсаторы в системе.

Шина CAN (Controller Area Network) является последовательной системой шин связи и отличается следующими признаками:

  • распространение сигнала происходит в обоих направлениях.
  • Каждое сообщение принимают все абоненты шины. Каждый абонент шины сам решает, будет ли он использовать сообщение,
  • Дополнительные абоненты шины добавляются простым параллельным включением.
  • Шинная система образует систему с задающим устройством. Каждый абонент шины может быть задающим или исполнительным устройством, в зависимости от того, подключен ли он в качестве передатчика или приемника.
  • В качестве средства передачи используется двухпроводное соединение. Обозначения проводов: низкий уровень CAN и высокий уровень CAN.
  • Как правило, каждый абонент шины может поддерживать связь по шине со всеми другими абонентами шины. Обмен данными по шине регулируется по правилам доступа. Основным отличием между шиной передачи данных K-CAN (кузовная шина CAN), шиной PT-CAN (шина CAN двигателя и трансмиссии) и шиной F-CAN (шина CAN ходовой части)является:
  • K-CAN: скорость передачи данных ок. 100 Кбит/с. Возможен однопроводной режим.
  • PT-CAN: скорость передачи данных ок. 500 Кбит/с. Однопроводной режим не возможен.
  • F-CAN: скорость передачи данных ок. 500 Кбит/с. Однопроводной режим не возможен.

Источник: https://starifaeton.ru/info/proverka-kan-shiny-multimetrom/

Как проверить can шину автомобиля?

Как проверить can шину автомобиля?

Появление цифровых шин в автомобилях произошло позднее, чем в них начали широко внедряться электронные блоки. В то время цифровой «выход» им был нужен только для «общения» с диагностическим оборудованием – для этого хватало низкоскоростных последовательных интерфейсов наподобие ISO 9141-2 (K-Line). Однако кажущееся усложнение бортовой электроники с переходом на CAN-архитектуру стало ее упрощением.

Действительно, зачем иметь отдельный датчик скорости, если блок АБС уже имеет информацию о скорости вращения каждого колеса? Достаточно передавать эту информацию на приборную панель и в блок управления двигателем.

Для систем безопасности это ещё  важнее: так, контроллер подушек безопасности уже становится способен самостоятельно заглушить мотор при столкновении, послав соответствующую команду на ЭБУ двигателя, и обесточить максимум бортовых цепей, передав команду на блок управления питанием.

Раньше же приходилось для безопасности применять не надежные меры вроде инерционных выключателей и пиропатронов на клемме аккумулятора (владельцы BMW с его «глюками» уже хорошо знакомы).

Однако на старых принципах реализовать полноценное «общение» блоков управления было невозможно. На порядок выросли объем данных и их важность, то есть потребовалась шина, которая не только способна работать с высокой скоростью и защищена от помех, но и обеспечивает минимальные задержки при передаче. Для движущейся на высокой скорости машины даже миллисекунды уже могут играть критичную роль. Решение, удовлетворяющее таким запросам, уже существовало в промышленности – речь идет о CAN BUS (Controller Area Network).

Суть CAN-шины

Цифровая CAN-шина – это не конкретный физический протокол. Принцип работы CAN-шины, разработанный Bosch еще в восьмидесятых годах, позволяет реализовать ее с любым типом передачи – хоть по проводам, хоть по оптоволокну, хоть по радиоканалу. КАН-шина работает с аппаратной поддержкой приоритетов блоков и возможностью «более важному» перебивать передачу «менее важного».

Для этого введено понятие доминантного и рецессивного битов: упрощенно говоря, протокол CAN позволит любому блоку в нужный момент выйти на связь, остановив передачу данных от менее важных систем простой передачей доминантного бита во время наличия на шине рецессивного. Это происходит чисто физически – например, если «плюс» на проводе означает «единицу» (доминантный бит), а отсутствие сигнала – «ноль» (рецессивный бит), то передача «единицы» однозначно подавит «ноль».

Представьте себе класс в начале урока. Ученики (контроллеры низкого приоритета) спокойно переговариваются между собой. Но, стоит учителю (контроллеру высокого приоритета) громко дать команду «Тишина в классе!», перекрывая шум в классе (доминантный бит подавил рецессивный), как передача данных между контроллерами-учениками прекращается. В отличие от школьного класса, в CAN-шине это правило работает на постоянной основе.

Для чего это нужно? Чтобы важные данные были переданы с минимумом задержек даже ценой того, что маловажные данные не будут переданы на шину (это отличает CAN шину от знакомого всем по компьютерам Ethernet). В случае аварии возможность ЭБУ впрыска получить информацию об этом от контроллера SRS несоизмеримо важнее, чем приборной панели получить очередной пакет данных о скорости движения.

В современных автомобилях уже стало нормой физическое разграничение низкого и высокого приоритетов. В них используются две и даже более физические шины низкой и высокой скорости – обычно это «моторная» CAN-шина и «кузовная», потоки данных между ними не пересекаются. К всем  сразу подключен только контроллер CAN-шины, который дает возможность диагностическому сканеру «общаться» со всеми блоками через один разъем.

Например, техническая документация Volkswagen определяет три типа применяемых CAN-шин:

  • «Быстрая» шина, работающая на скорости 500 килобит в секунду, объединяет блоки управления двигателем, ABS, SRS и трансмиссией.
  • «Медленная» функционирует на скорости 100 кбит/с и объединяет блоки системы «Комфорт» (центральный замок, стеклоподъемники и так далее).
  • Третья работает на той же скорости, но передает информацию только между навигацией, встроенным телефоном и так далее. На старых машинах (например, Golf IV) информационная шина и шина «комфорт» были объединены физически.

  Интересный факт: на Renault Logan второго поколения и его «соплатформенниках» также физически две шины, но вторая соединяет исключительно мультимедийную систему с CAN-контроллером, на второй одновременно присутствуют и ЭБУ двигателя, и контроллер ABS, и подушки безопасности, и ЦЭКБС.

Физически же автомобили с CAN-шиной используют ее в виде витой дифференциальной пары: в ней оба провода служат для передачи единственного сигнала, который определяется как разница напряжений на обоих проводах. Это нужно для простой и надежной помехозащиты.  Неэкранированный провод работает, как антенна, то есть источник радиопомех способен навести в нем электродвижущую силу, достаточную для того, чтобы помеха воспринялась контроллерами как реально переданный бит информации.

Но в витой паре на обоих проводах значение ЭДС помехи будет одинаковым, так что разница напряжений останется неизменной. Поэтому, чтобы найти CAN-шину в автомобиле, ищите витую пару проводов – главное не перепутать ее с проводкой датчиков ABS, которые так же для защиты от помех прокладываются внутри машины витой парой.

Читайте также  Как выбрать антенну для автомобиля?

Диагностический разъем CAN-шины не стали придумывать заново: провода вывели на свободные пины уже стандартизированной в OBD-II колодки, в ней CAN-шина находится на контактах 6 (CAN-H) и 14 (CAN-L).

Поскольку CAN-шин на автомобиле может быть несколько, часто практикуется использование на каждой разных физических уровней сигналов. Вновь для примера обратимся к документации Volkswagen. Так выглядит передача данных в моторной шине:

Когда на шине не передаются данные или передается рецессивный бит, на обоих проводах витой пары вольтметр покажет по 2,5 В относительно «массы» (разница сигналов равна нулю). В момент передачи доминантного бита на проводе CAN-High напряжение поднимается до 3,5 В, в то время как на CAN-Low опускается до полутора. Разница в 2 вольта и означает «единицу».

На шине «Комфорт» все выглядит иначе:

Здесь «ноль» — это, наоборот, 5 вольт разницы, причем напряжение на проводе Low выше, чем на проводе High. «Единица» же – это изменение разности напряжений до 2,2 В.

Проверка CAN-шины на физическом уровне ведется с помощью осциллографа, позволяющего увидеть реальное прохождение сигналов по витой паре: обычным тестером, естественно, «разглядеть» чередование импульсов такой длины невозможно.

«Расшифровка» CAN-шины автомобиля также ведется специализированным прибором – анализатором. Он позволяет выводить пакеты данных с шины в том виде, как они передаются.

Сами понимаете, что диагностика шины CAN на «любительском» уровне без соответствующего оборудования и знаний не имеет смысла, да и банально невозможна. Максимум, что можно сделать «подручными» средствами, чтобы проверить кан-шину – это измерить напряжения и сопротивление на проводах, сравнив их с эталонными для конкретного автомобиля и конкретной шины. Это важно – выше мы специально привели пример того, что даже на одном автомобиле между шинами может быть серьезная разница.

Неисправности

Хотя интерфейс CAN и хорошо защищен от помех, электрические неисправности стали для него серьезной проблемой. Объединение блоков в единую сеть сделало ее уязвимой. КАН-интерфейс на автомобилях стал настоящим кошмаром малоквалифицированных автоэлектриков уже по одной своей особенности: сильные скачки напряжения (например, зимний запуск на сильно разряженном аккумуляторе) способны не только «повесить» ошибку CAN-шины, обнаруживаемую при диагностике, но и заполнить память контроллеров спорадическими ошибками, случайного характера.

В результате на приборной панели загорается целая «гирлянда» индикаторов. И, пока новичок в шоке будет чесать голову: «да что же это такое?», грамотный диагност первым делом поставит нормальный аккумулятор.

Чисто электрические проблемы – это обрывы проводов шины, их замыкания на «массу» или «плюс». Принцип дифференциальной передачи при обрыве любого из проводов или «неправильном» сигнале на нем становится нереализуем. Страшнее всего  замыкание провода, поскольку оно «парализует» всю шину.

Представьте себе простую моторную шину в виде провода, на котором «сидят в ряд» несколько блоков – контроллер двигателя, контроллер АБС, приборная панель и диагностический разъем. Обрыв у разъема автомобилю не страшен – все блоки продолжат передавать информацию друг другу в штатном режиме, невозможной станет только диагностика. Если оборвать провод между контроллером АБС и панелью, мы сможем увидеть сканером на шине только ее, ни скорость, ни обороты двигателя она показывать не будет.

А вот при обрыве между ЭБУ двигателя и АБС машина, скорее всего, уже не заведется: блок, не «видя» нужный ему контроллер (информация о скорости учитывается при расчете времени впрыска и угла опережения зажигания), уйдет в аварийный режим.

Если не резать провода, а просто постоянно подать на один из них «плюс» или «массу», автомобиль «уйдет в нокаут», поскольку ни один из блоков не сможет передавать данные другому. Поэтому золотое правило автоэлектрика в переводе на русский цензурный звучит как «не лезь кривыми руками в шину», а ряд автопроизводителей запрещает подключать к CAN-шине несертифицированные дополнительные устройства стороннего производства (например, сигнализации).

Благо подключение CAN-шины сигнализации не разъем в разъем, а врезаясь непосредственно в шину автомобиля, дают «криворукому» установщику возможность перепутать провода местами. Автомобиль после этого не то что откажется заводиться – при наличии контроллера управления бортовыми цепями, распределяющего питание, даже зажигание не факт что включится.

Источник: https://avtocity365.ru/avtosignalizatsii-i-protivougonnye-sistemy/can-shina-v-avtomobile/

Диагностика шины CAN доступным языком — АвтоМастера.нет

Измерение и диагностика шины CAN

  Часто основной причиной неисправности в электронной системе управления транспортным средством — являются механические повреждения шины CAN или выход из строя блоков управления, висящих на шине CAN.

  Ниже в статье приведены способы диагностики шины CAN при различных неисправностях. В качестве примера показана типичная схема CAN шины на тракторе Valtra T ' серии.

  Условные обозначения:

  • ICL — Instrumental Cluster (Панель приборов)
  • TC1/TC2 — Transmission controller (Блок управления трансмиссией 1/2)
  • EC — Electronic controller (Блок управления двигателем)
  • PCU — Pump Control Unit (Блок управления топливным насосом)

  Измерения шины CAN BUS

— Оконечные резисторы 120 Ом (Иногда эти резисторы называют терминаторы) внутри блока управления EC и резистор, расположенный рядом с блоком TC1

— Если на дисплее (на боковой стойке) отображается код неисправности, имеющий отношение к шине CAN, то это означает неисправность проводки шины CAN или блока управления.

Система может автоматически сообщить, какой из блоков управления не может получать информацию (мониторы блоков управления передают информацию друг другу).

— Если дисплей мигает или сообщение шины CAN не может быть передано через шину, то для обнаружения места повреждения проводки шины CAN (или неисправного блока управления) можно использовать мультиметр.

Шина CAN не имеет физических повреждений

Войдите/Зарегистрируйтесь, чтобы увеличить

— Если сопротивление между проводами Hi (Высокое) и Lo (Низкое) шины CAN (в любой точке) примерно равно 60 Ом, то шина CAN не имеет физических повреждений.

— Блоки управления EC и TC1 исправны, так как оконечные резисторы (120 Ом) расположены в блоке EC и рядом с блоком TC1.

— Блок управления TC2 и приборная панель ICL также не повреждены, поскольку шина CAN проходит через эти блоки.

Шина CAN повреждена

Войдите/Зарегистрируйтесь, чтобы увеличить

— Если сопротивление между проводами Hi и Lo шины CAN (в любой точке) примерно равно 120 Ом, то проводка шины CAN повреждена (один или оба провода).

Шина CAN имеет физические повреждения

Войдите/Зарегистрируйтесь, чтобы увеличить

Если шина CAN повреждена, следует определить место повреждения.

— Сначала замеряется сопротивление провода CAN-Lo, например, между блоками управления EC и TC2.

-Таким образом, измерения должны быть выполнены между разъемами Lo-Lo или Hi-Hi. Если сопротивление примерно равно 0 Ом, то провод между измеряемыми точками не поврежден.

Источник: https://akppzapchast.ru/kak-proverit-can-shinu-avtomobilya/